companydirectorylist.com  Παγκόσμια Επιχειρηματικοί Οδηγοί και κατάλογοι Εταιρείας
Αναζήτηση Επιχειρήσεων , την Εταιρεία Βιομηχανίας :


Λίστες Χώρα
ΗΠΑ Κατάλογοι Εταιρεία
Καναδάς Λίστες Επιχειρήσεων
Αυστραλία Κατάλογοι επιχειρήσεων
Γαλλία Λίστες Εταιρεία
Ιταλία Λίστες Εταιρεία
Ισπανία Κατάλογοι Εταιρεία
Ελβετία Λίστες Επιχειρήσεων
Αυστρία Κατάλογοι Εταιρεία
Βέλγιο Επιχειρηματικοί Οδηγοί
Χονγκ Κονγκ Εταιρεία Λίστες
Κίνα Λίστες Επιχειρήσεων
Ταϊβάν Λίστες Εταιρεία
Ηνωμένα Αραβικά Εμιράτα Κατάλογοι Εταιρεία


Κατάλογοι Βιομηχανίας
ΗΠΑ Κατάλογοι Βιομηχανίας














  • 一文读懂:大模型RAG(检索增强生成)含高级方法 - 知乎
    最近推出的课程 构建和评估高级 RAG 中,以及 LlamaIndex 和评估框架 Truelens ,他们提出了RAG 三元组评估模式 — 分别是对问题的检索内容相关性、答案的基于性(即大语言模型的答案在多大程度上被提供的上下文的支持)和答案对问题的相关性。
  • RAG-检索增强生成从入门到实战,看这一篇就够了 - 知乎
    基于RAG的知识问答:包括用户query嵌入、召回、排序、拼接文档、构建context、基于query和context构建prompt、将prompt喂给大模型生成答案。 RAG的工作原理 问题理解和检索阶段 :RAG模型接收到用户的问题或请求后,利用检索模块从预定义的知识库或文档集合中找到与
  • RAG是什么? - 知乎
    RAG(Retrieval-Augmented Generation,检索增强生成)由Facebook在2020年发表的论文《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》中提出,应用于知识敏感的NLP任务,如问答。RAG将问题求解划分为检索和生成两阶段,先通过检索,查找与问题相关的文档,再将文档和
  • 检索增强生成(RAG)有什么好的优化方案? - 知乎
    RAG之前先做query分类 不是每个query需要召回增强,有些可以直接用大模型回答,例如摘要、续写、翻译等。query分类的目的是过滤和分流,把需要RAG的query送入RAG,把不需要RAG的query直接送入大模型。
  • GraphRAG:知识图谱+大模型 - 知乎
    Graph RAG是一种基于知识图谱的检索增强技术,通过构建图模型的知识表达,将实体和关系之间的联系用图的形式进行展示,然后利用大语言模型 LLM进行检索增强。 Graph RAG 将知识图谱等价于一个超大规模的词汇表,而实体和关系则对应于单词。
  • 大模型有什么好的评估方法(无须groudtruth)?RAG又有什么好的评估方法? - 知乎
    评估rag系统,就得从这两个部分入手,同时还要关注系统整体的表现。 rag评估的三大维度 评估rag系统,通常得从以下几个关键领域入手: 检索质量:检索器能不能准确找到并抓取相关文档? 响应质量:生成器能不能用好检索到的上下文,给出准确且有用的回答?
  • 大模型检索增强生成(RAG)有哪些好用的技巧? - 知乎
    RAG(检索增强生成)是近期几个大模型应用方向上 最难下笔的一个,一方面是因为技术方案仍在快速迭代;另一方面是市场对它的认知还存在一定偏差。目前市场认为:chatBI(让大模型做数据查询和分析)很有用但是有难度;Agent(让大模型自助规划任务实现
  • RAG的底层原理是什么? - 知乎
    高级rag在原始rag的基础上进行了多方面的优化,特别是在索引、向量模型优化和检索后处理等模块上,显著提升了系统的性能和效率。 这种灵活的架构使得RAG能够适应多种应用场景,成为实现大语言模型的关键方法之一。




Επιχειρηματικοί Οδηγοί , Κατάλογοι Εταιρεία
Επιχειρηματικοί Οδηγοί , Κατάλογοι Εταιρεία copyright ©2005-2012 
disclaimer