companydirectorylist.com  Παγκόσμια Επιχειρηματικοί Οδηγοί και κατάλογοι Εταιρείας
Αναζήτηση Επιχειρήσεων , την Εταιρεία Βιομηχανίας :


Λίστες Χώρα
ΗΠΑ Κατάλογοι Εταιρεία
Καναδάς Λίστες Επιχειρήσεων
Αυστραλία Κατάλογοι επιχειρήσεων
Γαλλία Λίστες Εταιρεία
Ιταλία Λίστες Εταιρεία
Ισπανία Κατάλογοι Εταιρεία
Ελβετία Λίστες Επιχειρήσεων
Αυστρία Κατάλογοι Εταιρεία
Βέλγιο Επιχειρηματικοί Οδηγοί
Χονγκ Κονγκ Εταιρεία Λίστες
Κίνα Λίστες Επιχειρήσεων
Ταϊβάν Λίστες Εταιρεία
Ηνωμένα Αραβικά Εμιράτα Κατάλογοι Εταιρεία


Κατάλογοι Βιομηχανίας
ΗΠΑ Κατάλογοι Βιομηχανίας














  • 一文了解Transformer全貌(图解Transformer)
    自2017年Google推出Transformer以来,基于其架构的语言模型便如雨后春笋般涌现,其中Bert、T5等备受瞩目,而近期风靡全球的大模型ChatGPT和LLaMa更是大放异彩。网络上关于Transformer的解析文章非常大,但本文将力求用浅显易懂的语言,为大家深入解析Transformer的技术内核。
  • 如何最简单、通俗地理解Transformer? - 知乎
    Transformer最开始应用于NLP领域的机器翻译任务,但是它的通用性很好,除了NLP领域的其他任务,经过变体,还可以用于视觉领域,如ViT(Vision Transformer)。 这些特点让Transformer自2017年发布以来,持续受到关注,基于Transformer的工作和应用层出不穷。
  • 挑战 Transformer:全新架构 Mamba 详解
    与类似规模的 Transformer 相比, Mamba 具有 5 倍的吞吐量, 而且 Mamba-3B 的效果与两倍于其规模的 Transformer 相当。 性能高、效果好,Mamba 成为新的研究热点。
  • MoE和transformer有什么区别和联系? - 知乎
    Transformer通过自注意力机制捕捉全局依赖关系。 MoE通过专家分工和稀疏计算提升模型的可扩展性。 (3) 应用场景 两者都广泛应用于自然语言处理(NLP)、计算机视觉(CV)等领域。 MoE-Transformer在大规模模型(如GPT、BERT等)中表现出色,能够处理更复杂的任务。
  • 如何从浅入深理解 Transformer? - 知乎
    Transformer升级之路:12、无限外推的ReRoPE? Transformer升级之路:13、逆用Leaky ReRoPE Transformer升级之路:14、当HWFA遇见ReRoPE 预训练一下,Transformer的长序列成绩还能涨不少! VQ一下Key,Transformer的复杂度就变成线性了 Transformer升级之路:15、Key归一化助力长度外推
  • Transformer模型怎么用于regression的问题? - 知乎
    回归问题概述 Transformer模型基础 回归问题中的Transformer架构调整 应用案例 优化与技巧 挑战与改进 1 回归问题概述 回归问题是监督学习中的一种任务,目标是预测一个连续值。这类问题通常涉及对数值数据的建模,常见的应用场景包括: 股票价格预测 温度预测 房价预测 传感器数据的分析 回归
  • 训练最基础的transformer模型用多大的gpu就行? - 知乎
    8gb或者12gb就够训练 12层的 encoder-decoder 架构 transformer 模型了。 序列长度在512左右。 batch size什么的可以通过 gradient checkpoint 或者 accumulate gradient 等操作间接提升。 小显存推荐开混合精度训练,或者开bf16缓解一下显存压力 (如果卡支持的话)。
  • 如何评价 Meta 新论文 Transformers without Normalization? - 知乎
    再后来,transformer成为主流,nlp那边用layer norm居多,所以transformer继承了它,至于为什么不用BN而用LN,之前知乎一个问题大佬们都有很多讨论了: transformer 为什么使用 layer normalization,而不是其他的归一化方法?




Επιχειρηματικοί Οδηγοί , Κατάλογοι Εταιρεία
Επιχειρηματικοί Οδηγοί , Κατάλογοι Εταιρεία copyright ©2005-2012 
disclaimer