companydirectorylist.com  Παγκόσμια Επιχειρηματικοί Οδηγοί και κατάλογοι Εταιρείας
Αναζήτηση Επιχειρήσεων , την Εταιρεία Βιομηχανίας :


Λίστες Χώρα
ΗΠΑ Κατάλογοι Εταιρεία
Καναδάς Λίστες Επιχειρήσεων
Αυστραλία Κατάλογοι επιχειρήσεων
Γαλλία Λίστες Εταιρεία
Ιταλία Λίστες Εταιρεία
Ισπανία Κατάλογοι Εταιρεία
Ελβετία Λίστες Επιχειρήσεων
Αυστρία Κατάλογοι Εταιρεία
Βέλγιο Επιχειρηματικοί Οδηγοί
Χονγκ Κονγκ Εταιρεία Λίστες
Κίνα Λίστες Επιχειρήσεων
Ταϊβάν Λίστες Εταιρεία
Ηνωμένα Αραβικά Εμιράτα Κατάλογοι Εταιρεία


Κατάλογοι Βιομηχανίας
ΗΠΑ Κατάλογοι Βιομηχανίας














  • 一文了解Transformer全貌(图解Transformer)
    自2017年Google推出Transformer以来,基于其架构的语言模型便如雨后春笋般涌现,其中Bert、T5等备受瞩目,而近期风靡全球的大模型ChatGPT和LLaMa更是大放异彩。网络上关于Transformer的解析文章非常大,但本文将力求用浅显易懂的语言,为大家深入解析Transformer的技术内核。
  • 如何最简单、通俗地理解Transformer? - 知乎
    Transformer最开始应用于NLP领域的机器翻译任务,但是它的通用性很好,除了NLP领域的其他任务,经过变体,还可以用于视觉领域,如ViT(Vision Transformer)。 这些特点让Transformer自2017年发布以来,持续受到关注,基于Transformer的工作和应用层出不穷。
  • Transformer模型详解(图解最完整版) - 知乎
    Transformer 的整体结构,左图Encoder和右图Decoder 可以看到 Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。Transformer 的工作流程大体如下: 第一步: 获取输入句子的每一个单词的表示向量 X, X 由单词的 Embedding(Embedding就是从原始数据提取出来的Feature) 和单词位置的
  • MoE和transformer有什么区别和联系? - 知乎
    Transformer通过自注意力机制捕捉全局依赖关系。 MoE通过专家分工和稀疏计算提升模型的可扩展性。 (3) 应用场景 两者都广泛应用于自然语言处理(NLP)、计算机视觉(CV)等领域。 MoE-Transformer在大规模模型(如GPT、BERT等)中表现出色,能够处理更复杂的任务。
  • 挑战 Transformer:全新架构 Mamba 详解
    与类似规模的 Transformer 相比, Mamba 具有 5 倍的吞吐量, 而且 Mamba-3B 的效果与两倍于其规模的 Transformer 相当。 性能高、效果好,Mamba 成为新的研究热点。
  • transformer何以提出? - 知乎
    Transformer的核心部分,是右边的两个黑色实线框圈起来的两部分,左边是编码器(Encoder),右边是解码器(Decoder)。 下图是 Transformer 用于中英文翻译的整体结构: 可以看到 Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。
  • 如何从浅入深理解 Transformer? - 知乎
    Transformer升级之路:12、无限外推的ReRoPE? Transformer升级之路:13、逆用Leaky ReRoPE Transformer升级之路:14、当HWFA遇见ReRoPE 预训练一下,Transformer的长序列成绩还能涨不少! VQ一下Key,Transformer的复杂度就变成线性了 Transformer升级之路:15、Key归一化助力长度外推
  • Transformer 和 cnn 是两条差异巨大的路径吗? - 知乎
    Transformer 和 CNN,真的是两条差异巨大的路径吗? 两者设计逻辑不一样,但目标一致——让机器看懂东西 CNN 是图像领域的老炮,靠“局部感知+权值共享”吃饭。 简单说,它专注于看图像的局部细节,就像你拿着放大镜逐块拼图,看得又快又省力。




Επιχειρηματικοί Οδηγοί , Κατάλογοι Εταιρεία
Επιχειρηματικοί Οδηγοί , Κατάλογοι Εταιρεία copyright ©2005-2012 
disclaimer